July 05, 2016 Volume 12 Issue 25

Electrical/Electronic News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Intro to reed switches, magnets, magnetic fields

This brief introductory video on the DigiKey site offers tips for engineers designing with reed switches. Dr. Stephen Day, Ph.D. from Coto Technology gives a solid overview on reed switches -- complete with real-world application examples -- and a detailed explanation of how they react to magnetic fields.
View the video.


Bi-color LEDs to light up your designs

Created with engineers and OEMs in mind, SpectraBright Series SMD RGB and Bi-Color LEDs from Visual Communi-cations Company (VCC) deliver efficiency, design flexibility, and control for devices in a range of industries, including mil-aero, automated guided vehicles, EV charging stations, industrial, telecom, IoT/smart home, and medical. These 50,000-hr bi-color and RGB options save money and space on the HMI, communicating two or three operating modes in a single component.
Learn more.


All about slip rings: How they work and their uses

Rotary Systems has put together a really nice basic primer on slip rings -- electrical collectors that carry a current from a stationary wire into a rotating device. Common uses are for power, proximity switches, strain gauges, video, and Ethernet signal transmission. This introduction also covers how to specify, assembly types, and interface requirements. Rotary Systems also manufactures rotary unions for fluid applications.
Read the overview.


Seifert thermoelectric coolers from AutomationDirect

Automation-Direct has added new high-quality and efficient stainless steel Seifert 340 BTU/H thermoelectric coolers with 120-V and 230-V power options. Thermoelectric coolers from Seifert use the Peltier Effect to create a temperature difference between the internal and ambient heat sinks, making internal air cooler while dissipating heat into the external environment. Fans assist the convective heat transfer from the heat sinks, which are optimized for maximum flow.
Learn more.


EMI shielding honeycomb air vent panel design

Learn from the engineering experts at Parker how honeycomb air vent panels are used to help cool electronics with airflow while maintaining electromagnetic interference (EMI) shielding. Topics include: design features, cell size and thickness, platings and coatings, and a stacked design called OMNI CELL construction. These vents can be incorporated into enclosures where EMI radiation and susceptibility is a concern or where heat dissipation is necessary. Lots of good info.
Read the Parker blog.


What is 3D-MID? Molded parts with integrated electronics from HARTING

3D-MID (three-dimensional mechatronic integrated devices) technology combines electronic and mechanical functionalities into a single, 3D component. It replaces the traditional printed circuit board and opens up many new opportunities. It takes injection-molded parts and uses laser-direct structuring to etch areas of conductor structures, which are filled with a copper plating process to create very precise electronic circuits. HARTING, the technology's developer, says it's "Like a PCB, but 3D." Tons of possibilities.
View the video.


Loss-free conversion of 3D/CAD data

CT CoreTech-nologie has further developed its state-of-the-art CAD converter 3D_Evolution and is now introducing native interfaces for reading Solidedge and writing Nx and Solidworks files. It supports a wide range of formats such as Catia, Nx, Creo, Solidworks, Solidedge, Inventor, Step, and Jt, facilitating smooth interoperability between different systems and collaboration for engineers and designers in development environments with different CAD systems.
Learn more.


Top 5 reasons for solder joint failure

Solder joint reliability is often a pain point in the design of an electronic system. According to Tyler Ferris at ANSYS, a wide variety of factors affect joint reliability, and any one of them can drastically reduce joint lifetime. Properly identifying and mitigating potential causes during the design and manufacturing process can prevent costly and difficult-to-solve problems later in a product lifecycle.
Read this informative ANSYS blog.


Advanced overtemp detection for EV battery packs

Littelfuse has introduced TTape, a ground-breaking over-temperature detection platform designed to transform the management of Li-ion battery systems. TTape helps vehicle systems monitor and manage premature cell aging effectively while reducing the risks associated with thermal runaway incidents. This solution is ideally suited for a wide range of applications, including automotive EV/HEVs, commercial vehicles, and energy storage systems.
Learn more.


Benchtop ionizer for hands-free static elimination

EXAIR's Varistat Benchtop Ionizer is the latest solution for neutralizing static on charged surfaces in industrial settings. Using ionizing technology, the Varistat provides a hands-free solution that requires no compressed air. Easily mounted on benchtops or machines, it is manually adjustable and perfect for processes needing comprehensive coverage such as part assembly, web cleaning, printing, and more.
Learn more.


LED light bars from AutomationDirect

Automation-Direct adds CCEA TRACK-ALPHA-PRO series LED light bars to expand their offering of industrial LED fixtures. Their rugged industrial-grade anodized aluminum construction makes TRACKALPHA-PRO ideal for use with medium to large-size industrial machine tools and for use in wet environments. These 120 VAC-rated, high-power LED lights provide intense, uniform lighting, with up to a 4,600-lumen output (100 lumens per watt). They come with a standard bracket mount that allows for angle adjustments. Optional TACLIP mounts (sold separately) provide for extra sturdy, vibration-resistant installations.
Learn more.


World's first metalens fisheye camera

2Pi Optics has begun commercial-ization of the first fisheye camera based on the company's proprietary metalens technology -- a breakthrough for electronics design engineers and product managers striving to miniaturize the tiny digital cameras used in advanced driver-assistance systems (ADAS), AR/VR, UAVs, robotics, and other industrial applications. This camera can operate at different wavelengths -- from visible, to near IR, to longer IR -- and is claimed to "outperform conventional refractive, wide-FOV optics in all areas: size, weight, performance, and cost."
Learn more.


Orbex offers two fiber optic rotary joint solutions

Orbex Group announces its 700 Series of fiber optic rotary joint (FORJ) assemblies, supporting either single or multi-mode operation ideal for high-speed digital transmission over long distances. Wavelengths available are 1,310 or 1,550 nm. Applications include marine cable reels, wind turbines, robotics, and high-def video transmission. Both options feature an outer diameter of 7 mm for installation in tight spaces. Construction includes a stainless steel housing.
Learn more.


Mini tunnel magneto-resistance effect sensors

Littelfuse has released its highly anticipated 54100 and 54140 mini Tunnel Magneto-Resistance (TMR) effect sensors, offering unmatched sensitivity and power efficiency. The key differentiator is their remarkable sensitivity and 100x improvement in power efficiency compared to Hall Effect sensors. They are well suited for applications in position and limit sensing, RPM measurement, brushless DC motor commutation, and more in various markets including appliances, home and building automation, and the industrial sectors.
Learn more.


Panasonic solar and EV components available from Newark

Newark has added Panasonic Industry's solar inverters and EV charging system components to their power portfolio. These best-in-class products help designers meet the growing global demand for sustainable and renewable energy mobility systems. Offerings include film capacitors, power inductors, anti-surge thick film chip resistors, graphite thermal interface materials, power relays, capacitors, and wireless modules.
Learn more.


Configurable analog chip computes with 1,000 times less power than digital

By Rick Robinson, Georgia Tech

Researchers at Georgia Tech have built and demonstrated a novel configurable computing device that uses a thousand times less electrical power -- and can be built up to a hundred times smaller -- than comparable digital floating-gate configurable devices currently in use.

Examples of FPAA chips and printed circuit boards. [Credit: Fitrah Hamid, Georgia Tech]

 

 

The new device, called the Field-Programmable Analog Array (FPAA) System-On-Chip (SoC), uses analog technology supported by digital components to achieve unprecedented power and size reductions. The researchers said that for many applications these low-power analog-based chips are likely to work as well as or better than configurable digital arrays.

Currently, field programmable gate arrays (FPGAs) -- digital devices widely used in consumer devices, defense systems, and more -- dominate the configurable chip market. These floating-gate integrated circuits can be altered internally at any time, and techniques to reconfigure them for many different forms and functions are well established.

Professionals familiar with FPGAs will find the programming interface of the new analog chip surprisingly like the digital circuits in many ways, said Jennifer Hasler, a professor in the Georgia Tech School of Electrical and Computer Engineering (ECE) and leader of the research team that produced the new analog architecture.

"But in other ways, the FPAA is going to seem quite different," she said. "In terms of the power needed, it's extremely different because you need only milliwatts to run the analog device, while it's hard to get an FPGA to work on less than a watt."

A paper on the new FPAA system-on-chip device has been published on the IEEE Xplore website. Another paper focusing on the details of programming FPAA devices was also published on the Xplore site. In addition, a third paper, detailing a high-level open-source programming toolset developed by Hasler and her team for programming analog arrays, has also been published online in the Journal of Low Power Electronics and Applications.

Novel techniques
Traditionally, analog technology has been used primarily for hard-wired circuits such as sensors that interface between digital devices and the real world; examples include the circuits that detect and reproduce sound in cell phones and other devices. Analog circuits are also used extensively in electronics to regulate and optimize power use. These single-function circuits cannot perform software-based computation, using hardware gates and switches, in the manner of digital integrated circuits.

Hasler's team, however, has developed techniques that perform computation using an analog-style physical architecture by reliably positioning electrons in an FPAA's connective structure. This approach stands in contrast to FPGAs, which process electrons through floating gates in ways similar to conventional digital semiconductors such as memory chips or central processing units.

One advantage of FPAAs is that they're non-volatile, Hasler explained, meaning they retain data even when power is turned off. This is similar to flash memory technology, such as the solid-state drives and storage cards commonplace today. The use of non-volatile memory reduces power consumption, in contrast to the higher power needs of the volatile SRAM configurations typically used in FPGAs.

"In addition to being non-volatile, our analog architecture lets us do something fairly radical -- we can compute using the routing fabric of the chip, exploiting areas that are usually considered just dead weight," Hasler said. "To help do this, we've developed highly efficient switches that can be programmed on, off, or in-between -- partially on and partially off. This flexibility provides both increased computation capabilities and reduced power consumption."

Milliwatts or microwatts
The present FPAA device can operate on less than 30 mW -- thousandths of a watt, Hasler explained. That level approaches three orders of magnitude less than a conventional digital configurable chip. Further design advances in analog arrays could bring their power needs down into the microwatt range -- millionths of a watt.

To program the analog environment of the new device, researchers manipulate electrons in precise ways. Using electron-injection and electron-tunneling techniques, they erase data by lowering the number of electrons at specific locations in the device structure to the lowest possible value. Then they encode new data by increasing the number of electrons located at a given location up to an exact value.

This complex approach makes possible a highly dense chip structure that offers many parameters -- meaning programmable variables that can exist in a large number of different states and offer many shadings of behavior. It is this structural density that allows greater computing capability for a given degree of physical size and power input.

"Our FPAA chip has roughly half a million of these programmable parameters," Hasler said. "They can be used as a switch in a digital manner -- using the lowest possible value for 'off' or the highest possible value for 'on' -- or we can achieve even more rich behavior using intermediate values."

A new toolset
The FPAA device includes a small amount of built-in digital circuitry that supports communication within the chip and also helps run the programming infrastructure. Utilizing these support features, the team has developed an extensive set of high-level programming tools to take advantage of the new chip.

Among other things, the new toolset is designed to make working with analog arrays accessible to those familiar with digital designs like FPGAs, which are programmed using comparable high-level tools. The new toolset can both simulate and program the FPAA reconfigurable device. A paper detailing these high-level tools has been published online.

"Our toolset uses high-level software developed in the Scilab/Xcos open-source programs, with an analog and mixed-signal library of components," Hasler said. "Georgia Tech undergraduates are already using these tools in classes in the School of Electrical and Computer Engineering that cover mixed-signal and analog devices and tools."

One area in which the analog approach is notably powerful involves command words -- voice recognition technology used in devices like smartphones to do such things as wake up circuits from an off state, Hasler said. Like traditional analog sensing circuits, an FPAA offers excellent context-aware capability at extremely low power states.

Hasler said that she has talked with several companies about potential applications of the FPAA in commercial devices. A significant number of FPAA chips has already been produced, but plans for potential large-scale manufacture of the chips have not been finalized. The key technologies in the FPAA system-on-chip are patent pending.

"We believe that analog technology offers very powerful ways to look at physical computing, with considerable potential for commercial, neuromorphic, military, and other applications," Hasler said.

CITATIONS:
Sihwan Kim, et al., "Integrated Floating-Gate Programming Environment for System-Level ICs," (IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2015). http://dx.doi.org/10.1109/TVLSI.2015.2504118

Suma George, et at., "A Programmable and Configurable Mixed-Mode FPAA SoC," (IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016). http://www.dx.doi.org/10.1109/TVLSI.2015.2504119

Michelle Collins, et al., "An Open-Source Tool Set Enabling Analog-Digital-Software Co-Design," (Journal of Low-Power Electronics and Applications, 2016). http://dx.doi.org/10.3390/jlpea6010003

Published April 2016

Rate this article

[Configurable analog chip computes with 1,000 times less power than digital]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2016 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy